
Solving the TSP Using Chaotic Simulated
Annealing

James Tunnell and Sami Abdul-Wahid

June 10, 2014

0.1 Abstract

We apply chaotic simulated annealing (CSA) using a transiently chaotic neural net-
work (TCNN) to the traveling salesman problem (TSP). Our implementation follows
the method described by Chen and Aihara in [CA95]. We apply the CSA process to
several TSP instances. The resulting system is more effective at solving the TSP than a
Hopfield Neural Network (HNN).

0.2 Background

0.2.1 Hopfield Neural Networks

Hopfiled neural networks (HNN) consist of a fully connected recurrent neural network
structure. They were introduced by Jon Hopfield in 1982 as method of implementing
content addressable memory. The weights between the matrices are determined accord-
ing to the inputs to to be stored in the network, after which the system can be initialized
by a partial state which will cause the network to converge to the reconstructed state.
States are represented by the states of all the neurons after they have settled into a sta-
ble state. One can define a function, called an energy function, of the network’s states
that will be usefull in determining the weights. The energy function is used to encode
a particular problem to be minimized. From the energy function, the set of weights
interconnecting the neurons can be determined such that, given any starting condition
of the network, the energy function will decrease nearly monotonically. As such, one can
encode problems such as the traveling salesman problem using a hopfield neural network,
and come out with an approximate solution.

0.2.2 Traveling Salesman Problem

In the traveling salesmen problem (TSP), a set of cities are to be visited in a tour,
without revisiting cities. For a symmetric TSP distance between cities is the same in
both directions. In this case, there are n!

2n unique tours, so an exhaustive search quickly
becomes infeasible.

0.2.3 Solving the TSP Using a HNN

Hopfield and Tank [HT85] first used neural networks to solve the TSP, using a HNN. To
solve an n-city TSP, n2 nodes are needed, and node outputs are arranged in a n-by-n
matrix. The output matrix of a solution amounts to a permutation matrix on the tour
order, so a ’1’ in a position (row i, column j) indicates that city i will be the jth city
visited. To be valid, the outputs should have only one ’1’ in each row and in each column.

2

To get a HNN to solve the TSP, the energy function is defined as

E = A/2
∑
X

∑
i

∑
j!=i

VXiVXj +B/2
∑
i

∑
X

∑
X!=Y

VXiVY i + C/2

(∑
X

∑
i

VXi − n

)2

+D/2
∑
X

∑
Y !=X

∑
i

dXY VXi(VY,i+1 + VY,i−1)

where VXi corresponds to the output of the neuron representing city X in tour position
i. Here, A, B, C, and D are constants to weight the energy terms, either emphasizing
validity or optimality.

0.2.4 Simulated Annealing

The main difficulty with the HNN is the purely monotically decreasing nature of the
energy function. This means that the network will converge to a local minimum deter-
mined purely by the starting state. As such, it may be rare to pick an initial state that
will lead to convergance at a global minimum.

Stochastic Simulated Annealing

This problem can be addressed by routinely perturbing the state of the network at each
iteration of its evolution. One method of doing this is injecting random solutions into the
system with decaying overall quantities. Thus the state of the system can be perturbed
out of local minima and have a better chance at reaching the global optimum, presumab-
ley because of attraction tendencies to the global optimum would be statistically greater
than those due to other, local, minima.

Chaotic Simulated Annealing

Aside from injection of stochastic numbers, a chaotic function can be used instead.
Chaotic behavior of a system is, classically, a completely deterministic phenomenon
characterized by highly consistent tendenices of the system in question to gravitate
towards a certain sup-region of the state space called the attractor. It is presumed that
the attractor encompases some or all of the local minima in a problem’s solution space.
Because a chaotic system would be systematically traversing regions in the attractor
space, and thus encountering all the encompassed local minima, the approach to the
local minima would thus be more efficient than the haphazard wanering of a stochastic
based system. As such, convergence in chaotic systems is faster than when using purely
stochastic annealing techniques.

0.3 Chaotic Neural Network

The chaotic neural network (CNN) model used in [CA95] is established by adding a self-
connection weight, so each neuron feeds back to itself to some degree. This model leads

3

to rich dynamics with co-existing attractors, both fixed-point and strange. This behavior
is in contrast to the standard HNN, that will converges monotonically to equilibrium (if
weights are symmetric).

0.3.1 Transient Chaos

While the chaotic dynamics are desirable for searching, they do not lead to an equilibrium
state at one of the minima. So, to harness the chaotic behavior and still retain a
convergent behavior in the end, the self-connection weight is reduced over time by an
exponentially decaying parameter. For this reason, the CNN model used is called a
transiently chaotic neural network (TCNN).

0.3.2 Chaotic Neural Network Model

The overall model for the CNN is much like HNN, except for the extra self-connection
term, weighted by zi(t), and also that the neuron inputs are weighted by parameter α.
See Figure 0.1. Of course, if zi(t) = 0 and α = 1 then this model reduces to the standard
HNN.

Figure 0.1: The neuron update equation for the CNN model presented in [CA95]

0.4 Implementation

The CNN model described in [CA95] was implemented in Python using numpy. The code
is available in the Git repository at https://github.com/jamestunnell/chaotic_tsp.
The primary file is tcnn.py, which contains the TCNN class for creating and running CSA
to solve the TSP. There is also a utility function in tsplib.py for extracting a distance
matrix from a TSPLIB XML file.

Finally, csa tsp.py provides a command-line interface to run TSP-solving scenarios
on different TSP files and parameters. The usage is as follows:

Solve the t r a v e l i n g salesman problem (TSP) by chao t i c s imulated annea l ing
(CSA) , us ing a t r a n s i e n t l y chao t i c neura l network (TCNN) .

Usage :
c s a t s p . py TSP FILE [opt ions]

Arguments :
TSP FILE The TSPLIB XML f i l e conta in ing d i s t an c e s between c i t i e s

(TSP problem in s t ance) .

Options :

4

https://github.com/jamestunnell/chaotic_tsp
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

−−nruns=NRUNS Solve TSP by CSA NRUNS times [d e f au l t : 1]
−−maxiter=MAXITER Maximum i t e r a t i o n s to run CSA for [d e f au l t : 1000]
−−k=K Nerve membrane damping fac to r , 0 to 1 [d e f au l t : 0 . 9]
−−alpha=ALPHA Sca l i ng parameter for neuron inputs [d e f au l t : 0 . 0 1 5]
−−beta=BETA Se l f−connect ion damping , 0 to 1 [d e f au l t : 0 . 0 1]
−−z0=SELFCONN Se l f−connect ion weight s t a r t va lue [d e f au l t : 0 . 1]
−−I0=INPUTBIAS Input b i a s [d e f au l t : 0 . 5]
−−ep s i l o n=EPSILON Neuron output function s t e epne s s [d e f au l t : 0 . 0 0 4]
−−W1=VALIDITYWT Weight o f v a l i d i t y c on s t r a i n t [d e f au l t : 1]
−−W2=OPTIMALITYWT Weight o f tour opt ima l i t y c on s t r a i n t [d e f au l t : 1]
−−energy Graph energy data , as l i n e p l o t
−−percent Graph percent va l i d data , as l i n e p l o t
−−l ength Graph tour l ength data , as histogram

0.5 Results

The TCNN was used to perform CSA on several TSP instances. The resulting tour
lengths obtained are shown in the tables below. The global optimum is given for refer-
ence. All TSP instances are obtained from TSPLIB.

In all cases, the CSA parameters used are as shown in Table 0.1

Table 0.1: CSA parameters used to find solutions for burma14

Parameter Value

I0 0.5
W1 1
W2 1
α 0.015
β 0.01
ε 0.004
k 0.9
z(0) 0.1

0.5.1 14-city TSP: burma14

The global optimum for burma14 is 3323. The optima found are shown in Table 0.2.
See that 25% of the solutions found were the global optimum, and 48% of solutions were
within 1% of the global optimum

0.5.2 17-city TSP: gr17

The global optimum for gr17 is 2085. The optima found are shown in Table 0.3. In this
case, none of the the solutions found were the global optimum, and 4% of solutions were
within 1% of the global optimum. However, 68% of solutions were withing 5% of the
global optimum.

5

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Table 0.2: Solutions produced by CSA on the burma17 TSP instance

Tour length Times found

3323 5
3336 3
3346 4
3359 5
3369 1
3381 2
3386 1
3413 1
3431 1
3432 1

0.6 Conclusions and Future Work

CSA was found to be an effective method to find TSP solutions, though it can be slow
on larger problems, and will less consistently approach the global minimum.

In the future, this method can be improved by combining the chaotic dynamics with
stochastic dynamics, called stochastic chaotic simulated annealing (SCSA), as presented
in [WLTF04].

6

Table 0.3: Solutions produced by CSA on the gr17 TSP instance

Tour length Times found

2103 1
2133 1
2142 1
2144 1
2151 4
2155 1
2159 1
2164 3
2167 1
2170 1
2176 1
2183 1
2191 1
2194 1
2198 1
2215 1
2228 1
2251 1
2320 1

7

Bibliography

[CA95] Luonan Chen and Kazuyuki Aihara. Chaotic simulated annealing by a neural
network model with transient chaos. Neural networks, 8(6):915–930, 1995.

[HT85] John J Hopfield and David W Tank. neural computation of decisions in
optimization problems. Biological cybernetics, 52(3):141–152, 1985.

[WLTF04] Lipo Wang, Sa Li, Fuyu Tian, and Xiuju Fu. A noisy chaotic neural network
for solving combinatorial optimization problems: Stochastic chaotic simu-
lated annealing. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 34(5):2119–2125, 2004.

8

	Abstract
	Background
	Hopfield Neural Networks
	Traveling Salesman Problem
	Solving the TSP Using a HNN
	Simulated Annealing

	Chaotic Neural Network
	Transient Chaos
	Chaotic Neural Network Model

	Implementation
	Results
	14-city TSP: burma14
	17-city TSP: gr17

	Conclusions and Future Work

